Create Custom FeaturePlots and preserve scale (no binning)

FeaturePlot_scCustom(
  seurat_object,
  features,
  colors_use = viridis_plasma_dark_high,
  na_color = "lightgray",
  order = TRUE,
  pt.size = NULL,
  reduction = NULL,
  na_cutoff = 1e-09,
  raster = NULL,
  raster.dpi = c(512, 512),
  split.by = NULL,
  split_collect = NULL,
  aspect_ratio = NULL,
  figure_plot = FALSE,
  num_columns = NULL,
  slot = deprecated(),
  layer = "data",
  alpha_exp = NULL,
  alpha_na_exp = NULL,
  label = FALSE,
  label_feature_yaxis = FALSE,
  combine = TRUE,
  ...
)

Arguments

seurat_object

Seurat object name.

features

Feature(s) to plot.

colors_use

list of colors or color palette to use.

na_color

color to use for points below lower limit.

order

whether to move positive cells to the top (default = TRUE).

pt.size

Adjust point size for plotting.

reduction

Dimensionality Reduction to use (if NULL then defaults to Object default).

na_cutoff

Value to use as minimum expression cutoff. This will be lowest value plotted use palette provided to colors_use. Leave as default value to plot only positive non-zero values using color scale and zero/negative values as NA. To plot all values using color palette set to NA.

raster

Convert points to raster format. Default is NULL which will rasterize by default if greater than 200,000 cells.

raster.dpi

Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is c(512, 512).

split.by

Variable in @meta.data to split the plot by.

split_collect

logical, whether to collect the legends/guides when plotting with split.by. Default is TRUE if one value is provided to features otherwise is set to FALSE.

aspect_ratio

Control the aspect ratio (y:x axes ratio length). Must be numeric value; Default is NULL.

figure_plot

logical. Whether to remove the axes and plot with legend on left of plot denoting axes labels. (Default is FALSE). Requires split_seurat = TRUE.

num_columns

Number of columns in plot layout.

slot

[Deprecated] soft-deprecated. See layer

layer

Which layer to pull expression data from? Default is "data".

alpha_exp

new alpha level to apply to expressing cell color palette (colors_use). Must be value between 0-1.

alpha_na_exp

new alpha level to apply to non-expressing cell color palette (na_color). Must be value between 0-1.

label

logical, whether to label the clusters. Default is FALSE.

label_feature_yaxis

logical, whether to place feature labels on secondary y-axis as opposed to above legend key. Default is FALSE. When setting label_feature_yaxis = TRUE the number of columns in plot output will automatically be set to the number of levels in split.by'

combine

Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot objects.

...

Extra parameters passed to FeaturePlot.

Value

A ggplot object

Examples

library(Seurat)
FeaturePlot_scCustom(seurat_object = pbmc_small, features = "CD3E",
colors_use = viridis_plasma_dark_high, na_color = "lightgray")
#> 
#> NOTE: FeaturePlot_scCustom uses a specified `na_cutoff` when plotting to
#> color cells with no expression as background color separate from color scale.
#> Please ensure `na_cutoff` value is appropriate for feature being plotted.
#> Default setting is appropriate for use when plotting from 'RNA' assay.
#> When `na_cutoff` not appropriate (e.g., module scores) set to NULL to
#> plot all cells in gradient color palette.
#> 
#> -----This message will be shown once per session.-----